Los científicos de la Universidad de Columbia, en Estados Unidos, han capturado las primeras imágenes de una nueva herramienta de edición de genes que podría mejorar las herramientas existentes basadas en CRISPR, según publica en el último número de la revista Nature. El equipo desarrolló la herramienta, llamada INTEGRATE, después de descubrir un ‘gen saltarín’ único en la bacteria ‘Vibrio cholerae’ que podría insertar grandes cargas genéticas en el genoma sin introducir roturas de ADN.En el nuevo estudio, los investigadores utilizaron una técnica ganadora del Premio Nobel llamada microscopía crioelectrónica para congelar el complejo de edición de genes en acción, revelando detalles de alta resolución sobre cómo funciona.»Mostramos en nuestro primer estudio cómo aprovechar INTEGRATE para las inserciones específicas de ADN en células bacterianas», explica Sam Sternberg, profesor asistente de bioquímica y biofísica molecular en el Colegio de Médicos y Cirujanos Vagelos de la Universidad de Columbia, que dirigió la investigación con Israel Fernández, profesor asistente de bioquímica y biofísica molecular en Columbia.»Estas nuevas imágenes, una maravillosa colaboración con el laboratorio de Israel Fernández, explican la biología con increíbles detalles moleculares y nos ayudarán a mejorar el sistema al guiar los esfuerzos de ingeniería de proteínas», añade.Los investigadores utilizaron la microscopía crioelectrónica, que consiste en congelar rápidamente una muestra del complejo de edición de genes en nitrógeno líquido y bombardearla con electrones. Luego utilizaron las imágenes que capturaron con el microscopio electrónico para generar modelos de resolución atómica del sistema INTEGRATE.El modelo estructural revela que el complejo está formado por dos secciones principales que están dispuestas en un filamento helicoidal. La porción más grande, llamada Cascada, gira y lleva un ARN guía que utiliza para escanear la célula en busca de una secuencia correspondiente en el ADN.Una vez que localiza y se une a la secuencia objetivo, une la cadena de ADN a través de las proteínas de «transposición» de TniQ que se encuentran en el extremo del complejo y reclutan otras enzimas que ayudan a modificar el ADN.El mecanismo de exploración de INTEGRATE parece funcionar de manera similar a otros sistemas CRISPR bien estudiados, algunos de los cuales también contienen un complejo en cascada con ARN guía. Sin embargo, a diferencia de otros sistemas CRISPR que usan Cascade para atacar el ADN para cortar, la función de Cascade dentro de INTEGRATE es apuntar al ADN para una inserción altamente precisa de cargas genéticas.En su estudio anterior,

 » Más información en 20minutos.es